Abstract

Networks increase interdependencies and this creates challenges for managing risks. This is especially apparent in areas such as security and enterprise risk management, where the actions of a single player in an interconnected network can wreak havoc on everyone in the network. The network, in this case, is only as strong as its weakest link. There are related problems in encouraging investments for prevention and protection, because the expected payoffs from such measures by one player are affected by the actions of other players in the network. In this chapter, Howard Kunreuther examines the challenges of interdependent security (IDS) and strategies for addressing these, including coordination with broader networks such as industry organizations and government.

On December 21, 1988, Pan Am flight 103 exploded near Lockerbie, Scotland. Terrorists had checked a bag containing a bomb in Malta on Malta Airlines, which had minimal security procedures. The bag was transferred in Frankfurt to a Pan Am feeder line, and then loaded onto Pan Am 103 in London’s Heathrow Airport. The bomb was designed to explode above 28,000 feet, a height normally first attained on this route over the Atlantic Ocean. Given such interdependencies among different players in a network, this example illustrates that security for the entire network may be only as strong as its weakest link. In this case, the terrorists deliberately exploited the widely varying security
procedures across the airlines. This problem is common to other transportation modes, in which there are interconnections between nodes in the network.¹

Interdependencies create a challenge for airlines in making decisions about investing in security. An airline knows that if it invests in baggage security, it may face a security risk from a dangerous bag loaded onto its plane by another airline. It faces this risk unless it inspects all transferred bags, a policy until recently followed only by El Al Airlines.

In a networked world, the risks faced by any one agent depend not only on that agent’s own choices but also on those of others. More specifically, the economic incentive of any agent to invest in protection depends on how she expects others to behave. The strategies can be risk-reducing measures as well as information-gathering and preparedness activities. The fact that such events are typically probabilistic, and that the risk that one agent faces is often determined in part by the behavior of others, gives a unique and complex structure to the incentives that agents face to reduce their exposures to these risks that come under the heading of interdependent security (IDS).

For many IDS problems, if an agent thinks that others will not invest in protection, this reduces the incentive for her to do so. On the other hand, should she believe that others will invest in security, it may be best for her to do so also. So it is often the case that there are two equilibria: (1) no one invests in protection, even though all would be better off if they had incurred this cost or (2) everyone invests in protection. In some cases, there may be incentives that can push the system past a tipping point where it shifts from the first equilibrium to the second.

This chapter characterizes the nature of the interdependency problem and suggests risk-management strategies for improving both individual and social outcomes. The first section outlines a series of IDS scenarios to illustrate the range of problems that fall under this rubric. The second section focuses on the problem of a firm with more than one decentralized division, using a simple game theoretic model to illustrate how the expected profits of each division would be improved had all of them invested in risk-reducing measures. The third section introduces risk-management strategies to improve individual and social welfare. We examine how one might induce tipping or cascading by either subsidizing or fining one of the divisions so that it has an economic incentive to invest in protection, leading the others to follow suit. In particular, I focus on coordination measures within a decentralized firm (for example, creating a corporate culture

¹ See Heal and Kunreuther (2005a) for more details on this scenario and a formal game theoretic model of the problem.
focused on managing low-probability, high-consequence events) as well as within an industry (for example, private trade associations) to induce cooperative behavior. The public sector can also play an important role through interventions such as taxes, subsidies, insurance, and regulations to deal with the negative externalities caused by interdependent security. The paper concludes with suggestions for future field and experimental research in this area and final comments.

IDS Scenarios

In addition to the airline security case discussed previously, the challenge of interdependent risks can be seen in many areas. In the following scenarios, weak links in the system may lead to suboptimal behavior by everyone. These cases also illustrate possible solutions to address these interdependent risks.

Example 1: Protection of Shared Network Resources

Many workplaces have a complex network of shared resources (such as files, disks, peripheral devices, and bandwidth) along with individual resources (such as desktop machines). The vulnerability of the shared resources to various security risks often depends strongly on the collective actions used to protect individual resources. For example, a shared disk may be erased by a virus entering the local network through the desktop machine of a user who failed to update his or her antivirus software signatures. Individual actions also affect shared resources such as bandwidth. For example, users whose machines are infected with a variety of “malware” can surreptitiously consume huge amounts of bandwidth, at the expense of all other users of the system. Such problems are common among residential commercial cable subscribers to Internet access.

Example 2: Global Supply-Chain Management

Global supply chains face risks from terrorists and other disruptions. One weak link is enough to allow a purposeful agent to penetrate the supply chain and to undermine the risk mitigation actions of all others in the supply chain (Heal et al. 2006). Making these global supply chains less vulnerable depends on the actions of many players.

2 See Heal et al. (2006) and Kearns (2005) for more details on this scenario.

3 See Heal et al. (2006) for more details on this scenario.
Spurred by the concerns of the U.S. Department of Homeland Security (DHS) for protecting critical infrastructure, major retailers and transportation and logistic specialists came together in 2002 to discuss the responsibilities of the private and public sectors in meeting the new challenges of interdependent security in global supply chains. These early discussions were eventually synthesized in the United States into a voluntary public-private partnership approach to cargo security called the Customs-Trade Partnership Against Terrorism (C-TPAT). The idea of C-TPAT was to develop basic principles, and associated best practices, for all participants in a global supply chain in four areas: site security, personnel (including background checks), material movements, and process control (Kleindorfer and Saad 2005). C-TPAT is designed to integrate the activities of three types of actors: private companies that manufacture and move cargo; port authorities and deconsolidators; and local, regional, and national agencies responsible for homeland security.

Example 3: Meltdown of a Nuclear Reactor

Assume that each country has one nuclear reactor, and that if it invests in a set of safeguards, the chances of an accident from the power plant are reduced to zero. We imagine a group of small adjacent countries (for example, Belgium, Holland, and Luxembourg, or Latvia, Lithuania, and Estonia), where a meltdown in any one will lead to radioactive contamination in all of them. What role could international compacts or trade associations play to ensure that all countries invest in safeguards? A related issue is the ripple effects from an accident that does not result in contamination. For example, in the United States, an accident at any one plant is likely to lead to costly regulatory interventions at all plants.

Example 4: Environmental Treaties

Suppose that countries are asked to sign a treaty to reduce on environmental risk, such as global warming or atmospheric pollution. There is a net cost to any one country for adopting the treaty, but potential benefits to the entire planet if enough countries take this action. What incentive is there for any one country to adopt the treaty if it

4 See Heal and Kunreuther (2005b) for more details on this scenario.

5 See Barrett (2003) for more details on this scenario.
knows that a number of other countries will not join? How can one convince countries with leverage to sign the treaty to induce others to follow suit? There are equity-efficiency trade-offs. For example, it might be economically more efficient for only a subset of countries to take preventive actions by being part of a treaty, but more equitable and politically saleable for all countries to sign the treaty.

Example 5: Interdependent Critical Infrastructures

As shown by disasters such as 9/11 and Hurricane Katrina, the failure of infrastructure in one sector can lead to disruptions in other sectors. For example, financial systems and emergency services are highly dependent on telecommunication operations, which are highly dependent on electricity. In a power grid, there is a systematic tendency to underinvest in reliability, individual capacity, or security measures such as trimming vegetation near distribution lines to reduce the chance of a power failure. The costs of failure are passed on to competitors and customers in other parts of the network. When the interdependencies cut across sectors, the natures of the risks are often not well understood so they pose special policy challenges. The private and public sector share an interest in making social and economic systems less vulnerable to disasters. There is growing interest in protecting critical infrastructure to assure the social and economic continuity of the nation (transportation, water distribution, telecommunication, electricity, emergency services, financial services, and so on) in the event of terrorist attacks or severe natural hazard events.

Example 6: Protecting a Firm Against Catastrophic Losses

For large corporations, a failure in one part of the world or one division can lead to disruption or bankruptcy of the entire firm nationwide or even worldwide. For example, a Bhopal-like accident at a chemical plant can lead to losses that are so large that they cause bankruptcy of the entire operation. An ownership group such as Lloyd’s, which controls a number of semiautonomous syndicates, can fail if one of the syndicates experiences a severe enough loss. In February 1995, Barings Bank was destroyed by the actions of a single trader in its Singapore unit, and in 2002, Arthur Andersen was sent into bankruptcy by the actions of its Houston branch working with Enron. Similar events

6 See Auerswald et al. (2006) for more details on this scenario.

7 See Kunreuther and Heal (2005) for more details on this scenario.
have happened to other financial services units in recent years and months, notably the potential collapse of the American International Group (AIG), the world’s largest insurer, as a result of a 377-person London unit known as AIG Financial Products that was run with almost complete autonomy from the parent company (Morgenson 2008). Given such an institutional structure, what economic incentive does any division have to incur the costs of protective measures that adversely affect its balance sheet, if other divisions in the organization are not taking similar actions? A culture of risk-taking can spread through the firm, because knowledge that a few groups are taking large risks reduces the incentives that others have to manage their operations carefully.

Characterizing the Problem—Investing in a Chemical Plant

How can these interdependent risks be addressed? As illustrated by some of the examples given, in many cases this is done by looking to the network itself. There may be ways of inducing tipping and cascading so that everyone’s welfare is improved. One may thus want to determine the nature of critical coalitions that can tip the entire system. Is there any agent (for example, firm, individual) or group of agents one should focus attention on? More generally, what types of private-sector coordination measures (for example, private trade associations) and public-sector interventions (for example, taxes, subsidies, fines, regulations, and well-enforced standards) are appropriate for dealing with the negative externalities caused by interdependent security?

To illustrate an approach to addressing interdependent risks, consider a simplified case of a single firm with several divisions (as discussed in Example 6). The BeSafe chemical firm has two identical independently operating divisions, each maximizing its own expected returns and having to choose whether to invest in a protective measure. Such an investment would reduce the probability of a catastrophic chemical accident to one of its plants. Suppose Division 1 has invested in protection. There is still an additional risk that BeSafe will go bankrupt if Division 2 has not taken this precautionary measure. In other words, the employees in Division 1 may lose their jobs because of the carelessness of Division 2. In this sense, Division 2 can contaminate other parts of the organization by not protecting its plants against a catastrophic accident. Similarly, Division 1 can contaminate Division 2 if it fails to adopt adequate protection.
From Division 1’s perspective, adding a second division creates the possibility of contamination and reduces its incentive to invest in protection. Why? Because in isolation, investment in protection buys the employees in Division 1 freedom from bankruptcy. With the possibility of contamination from others, it does not. Even after investment, there remains a risk of bankruptcy from the other division. Investing in protection buys you less when there is the possibility of contamination from others.

The results for the two-division case carry over to more general settings with some increase in complexity. The incentive for any agent to invest in protection depends on how many other agents there are and on whether they are investing. Other agents who do not invest reduce the expected benefits from each division’s own protective actions and hence reduce any single division’s incentive to invest.

Suppose there are \(n \) divisions in the firm. If \(n \) is large and none of the other \(n-1 \) divisions have invested in protection, it is highly unlikely that your division will want to invest in protecting itself against a catastrophic accident. Here is the intuition for this somewhat surprising result. One weak link in the organization compromises all the other divisions. In other words, one unprotected division endangers all the other divisions in the firm even if they have all invested in security. The more divisions that have not invested in protection, the greater the chances that the employees of any division will be looking for another job even if its own plants are secure from a catastrophic accident. As more divisions decide not to invest in security, the probability of a catastrophic accident becomes greater and there is even less economic incentive for your division to undertake protection. This sets up a negative cycle that leads to declining investments in protection. But the reverse can also be true. If more players invest in protection, there is a greater incentive for others to do so, and, above a certain threshold, this can lead to a positive and reinforcing cycle of investment incentives, as discussed in the text that follows.

Understanding the risks facing individual nodes and the entire network demands rigorous risk assessment and knowledge of varying risk perceptions. As BeSafe collects more accurate information on the risks of chemical accidents at each of its chemical plants, it can develop more effective strategies for planning at its different divisions. Risk perceptions may also vary across the network, and will affect investments in prevention. For example, some managers at BeSafe might invest in preventive actions only if they perceive that the chance of some event rises above a critical probability level.
Developing Risk Management Strategies: Tipping and Cascading

With the right incentives, the network itself can encourage actions by individuals that reduce collective risks. Tipping refers to a situation in which a switch of strategy by a small group of agents will lead all (or most of) the others to follow suit. In the context of the BeSafe chemical plant example, cascading implies that if one division invests in protection, one or more (but not all) other divisions will do the same, inducing others to invest in protection (Dixit 2002). There will be some divisions in an organization that may produce much greater negative externalities by their actions than others. For example, a large division that went bankrupt would be much more likely to have severe impacts on the organization than would a smaller unit. The large division could suffer a catastrophic loss from an accident that would have much more serious repercussions than if the accident occurred at a smaller plant. By providing incentives for the large division to invest in protection, others in the organization might do the same.

If there is a weak link in the network that can cause severe disruptions to others, it may be necessary only to provide economic incentives to this unit to improve its profitability as well as all the others in the system through a tipping or cascading process. It is this weak-link property that characterizes many practical problems in interdependency and can have major impacts on others members of the network. Tipping has been documented in many contexts (Schelling 1978).

Creating Incentives for Tipping

After a point of tipping or cascading is reached, individuals in the network will often begin making their own investments in protection. Coordinating mechanisms and incentives, often through private-public partnerships, can create an appropriate environment for that to occur.

Internal Organizational Rules and Other Coordinating Mechanisms

A large decentralized firm with many divisions will likely need some type of coordinating mechanism from top management to encourage investments if each division's objective is to maximize the expected returns to its own employees. A key question in

8 This section is based on material in Kunreuther and Heal (2005).
this regard is how companies who advertise “Safety is our most important product” actually operationalize this slogan. Larger firms in the chemical industry have formed functional units that play this role across the organization. For example, DuPont has a process safety management group that is responsible for making sure that all the different divisions in the firm follow appropriate procedures.

In the context of the BeSafe example, the company could set up such a cross-cutting unit and institute a specific rule that would require divisions to invest in protective measures when the expected benefits to the firm exceeded the costs of the measure. One way to determine what type of rule to enforce is to consider catastrophic accidents that could cause losses so large that they would threaten the solvency of the firm but where the division itself would not want to incur the costs of investing in protective measures.

Role of the Public Sector

The public sector can play an important role in protection, and has an interest in doing so in areas such as chemical safety in which a company’s actions can affect people off-site. A company such as BeSafe may not be held fully liable for the consequences of a chemical accident. For example, the firm causing an accident may not be legally responsible for losses from related decreases in property values of surrounding homes or disruptions in community life.

One way for the government to enforce its regulations is to turn to the private sector for assistance. Specifically, third-party inspections coupled with insurance protection can encourage divisions in firms to reduce their risks from accidents and natural disasters. Such a management-based regulatory strategy shifts the locus of decision making from the regulator to firms, which are now required to do their own planning to meet a set of standards or regulations (Coglianese and Lazer 2003).

The passage of Section 112(r) of the Clean Air Act Amendments (CAAA) of 1990 offers an opportunity to implement such a program. This legislation requires facilities to perform a hazard assessment, estimate consequences from accidents, and submit a summary report to the U.S. Environmental Protection Agency (EPA) called the Risk Management Plan (RMP) (Belke 2001). The challenge currently facing the EPA is how to encourage compliance with these regulations so that firms will improve safety.

There is some urgency for a type of decentralized procedure with appropriate incentives due to the EPA’s limited personnel and funds for providing technical guidance and auditing regulated facilities. Chemical firms, particularly smaller ones, have little financial incentive to follow centralized regulatory procedures if they estimate that the
likelihood they will be inspected by a regulatory agency is very low and they will face a small fine if caught. In such cases, they may be willing to take their chances and incur the fine should they be caught violating the rule or regulation. This is like putting money into a parking meter. If you know that the chances of a meter being checked are very low and the fine is relatively small, then you might think twice before parting with your quarters.

The combination of two market mechanisms—third-party inspections and private insurance—creates a powerful incentive for firms to implement RMPs to make their plants safer. It also encourages the remaining firms to comply with the regulation to avoid being caught. The intuition behind using third parties and insurance to support regulations can be stated rather simply when the regulatory agency has limited personnel to enforce its own rules: Low-risk divisions, which the EPA has no need to audit, cannot credibly distinguish themselves from the high-risk ones without some type of inspection.9

By delegating part of the inspection process to the private sector through insurance companies and third parties, the EPA provides a channel though which the low-risk divisions in firms can speak for themselves. If a division chooses not to be inspected by third parties, it is more likely to be a high-risk one than a low-risk one. If it does get inspected and shows that it is protecting itself and the rest of the organization against catastrophic accidents, it will pay a lower premium than a high-risk division that is not undertaking these actions. In this way, the proposed mechanism not only substantially reduces the number of inspections the EPA has to undertake, but also makes their audits more efficient.

Kunreuther, McNulty, and Kang (2002) show more formally how such a program could be implemented in practice. They provide supporting evidence from pilot studies by the Department of Environmental Protection in Delaware and Pennsylvania, which worked closely with the insurance industry and chemical plants in testing the proposed program. Similar studies for small firms were undertaken by McNulty et al. (1999).

The process safety management unit of a firm should support this program for two reasons. It provides a rationale for the firm to hire third-party inspectors to make sure its

9 The same logic of third-party inspections has been implemented in many domains. Perhaps the best known of these is the ISO 9000 quality standard. Such international standards are intended to reinforce best practices across organizations. These standards are almost always backed by audits as a means of assuring compliance with the standard. Research on ISO 14000 is discussed further in the text. For information on the standards development process at the International Standards Organization (ISO), see www.iso.org/iso/home.htm.
divisions are operating safely. The program also increases the firm’s expected profits by reducing the negative externalities that divisions create due to its fear of being contaminated by others.

Future Research

The problem of assessing and managing risks when interdependencies and network effects are present highlights the importance of undertaking research on both the descriptive and the prescriptive aspects of decision making for low-probability, high-consequence events. It also presents new challenges for the foundations of risk and security management in the presence of network interdependencies. Using the BeSafe chemical company example as background, we consider these challenges under the headings of risk assessment, risk perception, and risk management.

Risk Assessment

First, we need to collect more extensive data to estimate the risks and consequences of a catastrophic accident. The Wharton Risk Management and Decision Processes Center has analyzed accident history data from the U.S. chemical industry (Kleindorfer et al. 2007). This accident history data could be linked to financial information so one can analyze the association, if any, between the financial characteristics of the parent company of a facility and the frequency or severity of accidents. Similarly, the property damage estimates, and associated indirect costs from these, can be used to assess the consequences of environmental health and safety incidents on overall company performance and provide valuable insights for insurance underwriting for such accidents. Finally, the same data can be used to assess worst-case scenarios from such incidents, including those that might arise from site security risks associated with terrorism.

The second data collection project is a study of “near misses” in organizations and the systems that have been put into place to report and analyze these data (Phimister et al. 2003). Near misses are defined as incidents that, under different circumstances, could have resulted in major accidents. Linking this data on accident precursors to the accident history database may enable one to identify categories of precursors that give

10 This section draws on Cohen and Kunreuther (2007).
early warnings of the potential for major accidents. Audit tools and other aspects of near-
miss management can then focus not just on emergency response but also on the range
of prevention and mitigation activities that can help avert major disasters. Even with this
data, there will still be considerable uncertainty regarding the estimates of risks associ-
ated with these low-probability events (National Academy of Engineering 2004).

Risk Perception

Second, we need more research on how risk interdependencies affect firms’ deci-
sion processes. The IDS models developed to date assume that individuals or firms
make their decisions by comparing expected benefits with and without protection to the
costs of investing in security. There is a growing literature in behavioral economics that
suggests that individuals and firms make choices in ways that differ from such a rational
model of choice (Kahneman and Tversky 2000). For example, there is evidence that
people are myopic and do not appropriately take into account the long-term benefits of
investing in protective measures, preferring instead to have a return on their invest-
ments over a relatively short period. Such short-term horizons may work against protec-
tion and prevention measures for low-probability, high-consequence events by the very
nature of these events. It would be useful to understand what factors motivate man-
agers’ behavior and to consider strategies for making the investment more worthwhile.
Some type of accounting arrangement by the firm to convert the upfront payment into a
loan arrangement, for example, may enable managers to justify the upfront costs while
relieving the division of budget constraints that may deter them from making the
investment.

We also need to better understand how managers process information on risk when
there is considerable uncertainty on the likelihood or consequences of an accident. We
know that individuals have a difficult time dealing with ambiguous risks, particularly
those of the low-probability variety (Slovic 2000). One telling example is the way the
chemical industry behaved prior to and after the Bhopal disaster. Prior to the accident,
there was a tendency to treat an accident such as the one that occurred in the Union
Carbide plant in India as one that will not happen to “our firm.” Following the disaster,
all chemical companies undertook a detailed study of chemicals with catastrophic risk
potential and took special measures to deal with them (Bowman and Kunreuther 1988).
Risk Management

Third, with respect to managing risks, we need to understand the impact of certified information, including audits, on behavior and outcomes in risky environments. For the chemical industry, for example, third-party inspection may serve the double purpose of providing information on the level of risk of particular installations as well as providing a signal to insurers and regulators on premiums and inspection levels for firms that invest in protective measures. Incentives implied by improved alignment of insurance premiums with the level of risk of a company can play an important role in inducing investments in risk reduction. Reliable third-party inspections can provide the necessary certification that the chemical firm has an appropriate risk-management plan and is operating in a safe manner. Regulatory agencies and public-interest groups may also find the audits/inspections to be of value, knowing that insurers and auditors are concerned with their own bottom line and would have no incentive to classify a firm as not risky if, in fact, it posed a high risk.

Another area that needs to be examined more carefully is the role that certifications, such as ISO 14000, can play in encouraging firms and divisions to operate more safely. In an analysis of ISO data and firm performance, Kang (2005) has shown that facilities that have had serious environmental problems were more likely to arrange to be ISO 14000 certified than lower-risk facilities and that their performance improved over that of the other facilities in the industry after they were certified. There is a tendency for many facilities in a firm to undertake ISO 14000 certification procedures at approximately the same time, suggesting that organizations are using this standard as a way of forcing many of their facilities to undergo an inspection that they might otherwise not consider.

Finally, there may be an important role that trade associations can play in providing guidelines for firms to follow with respect to their operations. The American Chemistry Council (ACC), an association of chemical manufacturers, has undertaken this role through its Responsible Care initiative. Since 1988, members of the ACC have significantly improved their environmental, health, safety, and, in recent years, security performance through the Responsible Care initiative. Participation in Responsible Care is mandatory for ACC member companies, all of which have made CEO-level commitments to uphold requirements that include a management system to drive environmental, health, safety, and security performance, sharing progress and activities with the public and having mandatory certification by independent, accredited auditing firms.11

11 For more information on the Responsible Care program of ACC, see www.responsiblecare-us.com/.
Conclusion: Using Networks to Address Risks

Research in these areas can improve our understanding of the nature of interdependent risks and the effectiveness of strategies to address them. These risks arise in the context of networks, so we need to understand network relationships and interactions to understand the true nature of the risks. This requires assessing the risks of individual players and how their actions affect one another. As with the case of airline security discussed in the opening of this chapter, one weak link can erode the security of the entire network and create disincentives for individual investments in protective measures.

Because these risks arise within interdependent networks, effective solutions usually demand looking beyond an individual firm or division. These solutions may involve coordinating efforts across divisions in a firm, across a supply chain, or across the public and private sectors to create a context and supporting information for individual actions that decrease collective risk. These incentives can push the network to a tipping point or cascade that then reinforces behavior that benefits the entire network. The challenge of interdependent risks derives from network interactions. It is, therefore, not surprising that efficient solutions to these problems of interdependency require understanding and harnessing the power of the network.

References

