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Abstract 
Understanding the value of a product development project is central to a firm’s choice of project 
portfolio. The value of a project to a firm depends not only on the project’s properties but also on the 
other projects being developed by the firm. This is due to interactions with other projects in the portfolio 
that address the same consumer need and with other projects that require the same development resources. 
In this study, we empirically investigate the structure and significance of these portfolio-level project 
interactions. Using a pharmaceutical industry dataset that we develop, we conduct an event study around 
the failure of phase III clinical trials, which exploits the natural experiment of a product development 
failure to give us a measure of the value of a drug development project to a firm. We then explain the 
variance in the value of projects based on interactions with other projects in the firm’s portfolio. We find 
that the presence of other projects targeting the same market and a build-up of projects that require the 
same development resources reduce the value of a development project. In addition to providing evidence 
on the significance and structure of these portfolio-level project interactions, the empirical model 
estimated in this paper also provides a data-driven approach to valuing projects that may be the focus of 
licensing transactions. 
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1 INTRODUCTION 

Understanding the value of a product development project is essential to the scientific management of the 

product development process.  The value of a project to a firm depends not only on the project’s 

properties but also on the other projects that the firm is developing. This is due to interactions with other 

projects in the firm’s development portfolio. Understanding these portfolio-level project interactions is 

central to a firm’s choice of project portfolio and development capacity (Loch et al. (2001a), Kavadias 

and Loch (2003)). Decision support models for portfolio choice have provided analytical models of these 

interactions (cf. Ding and Eliashberg (2002), Loch and Kavadias (2002)). In this study, we empirically 

investigate the structure and significance of these interaction effects. 

We use the natural experiment of a product development failure to estimate the value of an individual 

project. We design an event study around the failure of a late stage development project. This event study 

gives us a metric of the change in the firm’s value (as measured by the stock markets) due to the failure of 

a development project, all other factors affecting the firm’s value being held constant (MacKinlay 

(1997)). This change in firm value is an empirical measure of the value of the failed project to the firm. 

We then explain the variance in the value of all failed projects in our sample based on the interactions of 

the project with other projects in the portfolio. Specifically, we investigate how the value of a project to a 

firm may depend on the presence of other projects in the firm’s portfolio which address the same 

customer need and on other projects which utilize the same development resources.  

The specific context of our empirical examination is the pharmaceutical industry. New product 

development in the pharmaceutical industry is regulated and thus, proceeds along a series of well defined 

steps illustrated in Figure 1. (In Figure 1 and all subsequent illustrations, each small symbol indicates a 

unique development project. Projects that target the same market are illustrated in the same shape.) Drug 

development starts with an investigation of the chemical and biological properties of a compound in the 

lab (Basic Research), followed by animal trials (Pre-clinical Studies) and, finally three stages of clinical 

trials or trials in human subjects– Phase I, II and III clinical trials. Our study is designed around the 

failure of development projects currently undergoing phase III clinical trials, the final stage in the 
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development process, where the efficacy and safety of the drug is investigated in a large sample of 

patients. Common causes for failures at this stage include adverse side effects of the drug and harmful 

interactions with other drugs. For a detailed description of the drug development process, the reader is 

referred to Pisano and Rossi (1994) and Girotra et al. (2004). 

The pharmaceutical industry presents an ideal domain of enquiry for our study. It is a large industry 

where product development is central. While the product development process closely resembles the 

classic phase-gate development process prevalent in most industries, the role of regulators in the later 

phases of this process significantly simplifies the empirical design of our study. The different stages in the 

product development process are clearly and uniformly defined by the regulator and all pharmaceutical 

firms must pass their development projects through the same development stages. This allows us to 

identify projects at the same stage of development across different firms in the industry. The results of 

each stage of the development process are public knowledge. This allows us to create our data set of 

product development failures from public sources. Finally, the late stage product development portfolio 

for each firm is public knowledge. Thus, the stock markets have information on portfolio-level project 

interactions that we are investigating, when they value failures. 

We find empirical evidence for two portfolio-level project interactions. First, we find that the impact of 

the failure, which is our measure for the value of the project to the firm, is smaller when the firm is 

developing other projects for the same market as the failed project. When the firm is developing multiple 

projects for the same market, the failure of any one project does not preclude the firm from earning sales 

in that market. Thus, the marginal value of any one of the multiple projects is smaller than the value of a 

lone project being developed for the market.  

Second, we find evidence that the value of a compound or the impact of a failure is smaller if the firm has 

more than the anticipated number of projects in its portfolio that require the same resources as those used 

by the failed project. A failure leads to the freeing up of resources shared by the failed and other projects. 

These freed up resources can be redirected to other projects waiting for these resources, which may then 

be brought to the market sooner than they would have if there was no failure. Thus, failures in portfolios 
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with more than the anticipated number of projects that utilize the same resources as the failed project lead 

to the acceleration of the other compounds in the portfolio and have a smaller impact.  

This study enhances our understanding of portfolio-level project interactions. We build and validate a 

theory on the financial effect of these interactions. We find that these interactions significantly alter the 

value of a development project to a firm and are thus crucial to portfolio choices. Our empirical evidence 

also allows for a critical examination of the existing analytical literature on portfolio and capacity choices 

with respect to the modeling of project interactions.  This can help us understand the reasons behind the 

limited application of this literature in practice (Loch et al. (2001a), Loch and Kavadias (2002), and 

Shane and Ulrich (2004)) and inspire new improved analytical models which take into account the 

empirical regularities that we find.  Finally, our results also provide a data-driven model that aids in 

valuing individual projects in the context of the product development portfolio of a firm. This is useful in 

valuing development projects available for in-licensing and comparing alternate development projects.  

2 PRIOR LITERATURE 

Two streams of academic work are relevant to this study: research on portfolio choices and research on 

the financial impact of product development outcomes. 

An established body of literature in Operations Research attempts to provide optimal product portfolio 

decisions. Initially, optimization models were developed in a static and deterministic setting, with the 

decision modeled as one-shot choice under complete information, often with a mathematical 

programming formulation (see e.g. Lucas (1971)). More recent work has emphasized the stochastic, 

dynamic or process nature of the problem and has analyzed capacity and congestion effects (Loch and 

Terwiesch (1999)) as well as strategies for search and information gathering (Loch et al. (2001b), Dahan 

and Mendelson (2001)). 

Portfolio-level project interactions are central in many of the contemporary models on portfolio selection.  

Loch and Kavadias (2002) present a dynamic model of portfolio selection within a budget constraint, 

taking into account multiple project interactions, including those arising out of shared markets in a 
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general setting. Dahan and Mendelson (2001) in their study on the number of development approaches to 

pursue for a given market, model the interactions between projects of different quality that target the same 

market. Ding and Eliashberg (2002) investigate the number of development approaches to pursue for a 

given market in a staged development process. In this investigation, they build an analytical model of the 

interactions between projects targeting the same market. Unlike Dahan and Mendelson (2001), in this 

model all successful projects are assumed to have identical quality. In contrast with this decision theoretic 

literature on portfolio selection, we take an empirical approach to investigate the portfolio-level project 

interactions. We empirically investigate interactions similar to the ones modeled by Ding and Eliashberg 

(2002).  

Adler et al. (1995) in their analysis of project development time, build a model of project interactions due 

to shared development resources. Using a development project as their unit of analysis they find– if 

development resources are stretched, the project completion times are longer. In contrast with Adler et al. 

(1995), we study the effect of shared development resources at the portfolio level. We examine the impact 

of one project on other projects in the portfolio. Further, we take an empirical approach and find the 

impact of these interactions on the financial value of the project as opposed to the development lead-time. 

There have been multiple studies that focus on the impact of product development events on financial 

value, notably  Hendricks and Singhal (1997) on  the impact of product development delays. Hendricks 

and Singhal (1997) find significant negative stock returns associated with the announcement of product 

introduction delays. They find that industry competitiveness and the firm’s degree of diversification are 

predictors of this impact. Chaney et al. (1991) and Chaney and Devinney (1992), study the stock market 

reaction to announcements of new products across a wide range of industries. Bayus et al. (2003) study 

the impact of new product introductions in the personal computer industry on profit rate, profit rate 

persistence and asset growth. Robertson et al. (1995) and Chen et al. (2005b) study the impact of new 

product announcements on competing firms. Chen et al. (2005a) examine the effect of product 

introduction delays on industry rivals. Sharma and Lacey (2004) compare the impact of pharmaceutical 

successes and failures on firm value. This body of work quantifies the impact of these product 
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development events. Further, they explain the variance in the financial impact of product development 

events using the properties of the product (which influence the sales potential) or industry, but not the 

portfolio. 

We build on the rigorous methodologies developed in this literature to empirically value projects. 

However, in contrast to this body of literature, we relate the impact of the product development outcomes 

(our measure for the financial value of projects) to key properties of the product development portfolio– 

the presence of other compounds in the portfolio that target the same unmet market need, and the 

availability of research opportunities that can utilize resources freed up due to the failure. 

3 THEORY DEVELOPMENT 

Failure of a late-stage development project represents the loss of potential future sales for a firm and so, 

should lead to a decrease in the value of the firm. In the pharmaceutical industry, a typical drug 

undergoing phase III clinical trials has an average approval probability of about 80% (Parexel 

(2002/2003)). On approval, an average drug has the potential to generate sales of hundreds of millions of 

dollars. When a phase III failure occurs, these potential sales are lost; the 20% probability of failure is 

realized with certainty. This gives us our baseline hypothesis— 

Hypothesis 1: The value of a pharmaceutical firm falls when a compound fails in phase 

III clinical trials. 

Not surprisingly, previous research has proposed and found evidence for similar hypotheses. Sharma and 

Lacey (2004) propose a similar hypothesis in their study of stock market reactions to news from the 

pharmaceutical industry. Hendricks and Singhal (1997) also hypothesize that a firm’s market value falls 

when there is an announcement of a product development delay.  

3.1 Effect of Projects targeted at the Same Market 

Drug development, like most other product development, is associated with long development lead times 

and low odds of success. The clinical trials phase of the drug development process alone takes an average 
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of 6 years to complete and only one out of six drugs that enter clinical trials makes it to the market. 

Fortunately, there are often multiple, unrelated technological approaches available to address the same 

customer need. For instance, in the pharmaceutical industry, there are multiple chemical compounds that 

pharmacologically inhibit the COX enzymes and provide relief from the symptoms of inflammation and 

pain. These compounds often have different side-effects and thus, their success or failure in late-stage 

clinical trials is largely unrelated. In such settings, firms follow a parallel development strategy that 

increases their likelihood of developing a viable product for a given lucrative market within a reasonable 

time frame. The candidate compound farthest along in the development process is referred to as the lead 

compound and the other compounds are referred to as backup compounds. Such parallel development 

strategies have been shown to be optimal in a variety of product development settings where, the odds of 

success are low, the development lead times are long and the correlation between the successes of 

different concepts is low (Loch et al. (2001b), Ding and Eliashberg (2002)). 

While firms often develop multiple compounds from the same class to address a given market 

opportunity, firms rarely introduce more than one drug for the market. Even if the firm has more than one 

successful drug for the market, it would earn the same sales from the market as it would if it had only one 

successful compound (Ding and Eliashberg (2002), Girotra et al. (2004)). Firms typically introduce any of 

the candidate drugs that pass clinical trials, and then cease development of all other drugs targeted 

towards this market. Consequently, the probability of having at least one successful drug for a given 

market is a crucial metric related to the financial value of a product development pipeline. By developing 

multiple compounds for the same market, firms increase this probability. Thus, the marginal value of a 

compound to a firm is proportional to how much the compound increases the probability of having a 

successful drug in its market for the firm. To illustrate this concept consider the two scenarios provided in 

Figure 2. 

In Figure 2, the compounds of concern have a probability of failure of 20%. In failure 1, the firm is only 

developing one compound for the disease. Prior to the failure, the firm has an 80% probability of having 

at least one successful drug in the indication of question from the drugs in phase III development. After 
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the failure, this probability changes to 0%. Due to the failure, the probability of earning the sales from this 

indication falls by 80 percentage points. Equivalently, the change in the expected future cash flows from 

the pipeline due to the failure is proportional to 80 points. Alternately, consider failure 2, in this case the 

firm is developing two compounds for the disease market. Prior to the failure, the firm had a 96% (1–

(0.2)2 = 0.96) chance of having at least one successful drug in the indication. After the failure, this 

changes to 80%. As a result of failure 2, the change in probability is 16 percentage points. The change in 

the expected future cash flows from the pipeline is thus proportional to 16 points. The presence of a 

backup compound in the case of failure 2 mitigated the impact of the failure. This should be reflected in 

the stock market reaction to the failures, or the valuation of these development projects. Next, we extend 

this logic to a general portfolio with compounds in each of the three phases of development. 

Consider a pipeline with in  candidate drugs undergoing phase i ( )1,2,3i =  development for the market in 

question. Let ip  denote the probability of failure of a drug currently in phase i trials during phase i or in 

any subsequent phase.1,2  From this pipeline, the firm could earn the sales from the market at any one of 

three different points in time corresponding to three mutually exclusive realizations of the clinical trials– 

(1) One of the compounds currently undergoing phase III trials succeeds. (2) All the compounds currently 

undergoing phase III trials fail, but one of the compounds currently undergoing phase II trials succeeds in 

Phase II trials and all subsequent phases (Phase III). (3) All the compounds currently undergoing phase III 

and phase II trials fail, but one of the compounds currently undergoing phase I succeeds in phase I trials 

and all subsequent phases. 

Assuming that clinical trials of different concepts are independent, the probability of scenarios 1, 2 and 3 

are given as ( )3
31 np− , ( )3 2

3 21n np p−  and ( )3 2 1
3 2 11n n np p p−  respectively. Under each of the three scenarios, 

the firm earns the sales from the market, however under scenario 2 it takes the firm longer to bring the 

                                                      
1 If the probability of success in phase i is given as [ ]0,1is ∈ ; 

3

1i i
k i

p s
=

= −∏ . Thus, 1 2 3p p p≥ ≥ with the equality arising iff 

the probability of success in any stage is 1.  
2 We assume that all drugs at the same stage of trials and targeted for the same market have the same probability of success.  
Danzon et al. (2004) provides empirical support for this assumption.  
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product to the market, and even longer under scenario 3. Thus, the sales under scenario 2 and 3 should be 

discounted using appropriate discount factors– 2α and 1α  respectively. The expected net present value of 

sales from this indication are thus given as  

 [ ] [ ] ( ) ( ) ( )3 3 32 2 1
3 2 3 2 1 3 2 1* 1 1 1n n nn n nE NPV E M p p p p p pα α⎡ ⎤= − + − + −⎣ ⎦  

where [ ]E M  is the expected value of sales from the target market conditional on having a successful 

drug. Equivalently, 

[ ] ( ) ( ) ( )3 3 32 2 1
3 2 3 2 1 3 2 11 1 1n n nn n nE NPV p p p p p pα α∝ − + − + −  

where the expected sales serve as the proportionality constant. We refer to the right hand side of the 

above expression as the time adjusted probability of indication success (or TAPIS),  

 ( ) ( ) ( ) ( )3 3 32 2 1
1 2 3 1 2 3 3 2 3 2 1 3 2 1, , ; , , 1 1 1n n nn n nTAPIS p p p n n n p p p p p pα α⎡ ⎤= − + − + −⎣ ⎦  (1) 

TAPIS is proportional to the expected financial returns from the development projects. The marginal 

value of a phase III compound or the impact of losing a phase III compound in the portfolio is thus 

proportional to the consequent change in TAPIS ( )3 3 1n n→ −  and that leads to a change in the expression 

in (1) given by (2).  

 ( ) ( ) ( ) ( ) ( )3 3 2 2 11
3 3 3 3 2 2 1 2 11 1 1 1n n n n nTAPIS TAPIS n TAPIS n P P P P Pα α− ⎡ ⎤Δ = − − = − − − − −⎣ ⎦  (2) 

Equation (2) is the change in the time-adjusted probability of earning the sales from the target market. 

This is proportional to the reduction in the expected value of the future cash flows from the sales in the 

target market. Thus, failures for which the expression in (2) is large should have a higher financial impact. 

This leads us to our next hypothesis— 

Hypothesis 2: The change in the value of a pharmaceutical firm when a phase III 

compound fails is negatively correlated with the change in the time adjusted probability 

of success for an indication (ΔTAPIS in equation(2)).  
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3.2 Effect of other compounds in the portfolio that utilize the same development resources 

Clinical trials for compounds can be viewed as a three-stage process, with each phase of clinical trials as a 

stage. Compounds that are successful in phase II trials constitute the demand for phase III resources. 

Phase III trials involve the examination of the safety and efficacy of the drug in a large sample of patients 

and the primary resources required at this stage are clinical trial sites and bio-statisticians. Irrespective of 

the disease or indication associated with the compound, all compounds draw substantially from the same 

pool of resources. It is quite costly to scale the capacity of these phase III resources up or down in the 

short term because these resources are mostly professionals hired with a multi-year expectation of 

employment, or fixed assets which take time to set up. Consequently, firms must make long-run 

commitments to the capacity of these sticky phase III resources. Firms set up phase III capacity well in 

advance of observing the results of the most recent phase II trials or the current demand for phase III 

resources. On the basis of the long-run or expected probability of success in phase II and the phase II 

capacity, firms forecast the demand for phase III resources, and make long-term commitments to R&D 

capacity to meet the same (Girotra et al. (2004)).  

For instance, consider a firm that from its past experience believes that the average phase II probability of 

success or success rate across all diseases is 50%. If the firm has the capacity to process four compounds 

per year in phase II clinical trials, it expects that two of the four compounds will succeed and proceed to 

phase III resources. Thus it establishes phase III capacity as 50% of the phase II capacity– 2 

compounds/yr.  

While the firm establishes capacity of phase III resources on the basis of the expected phase II probability 

of success, the actual demand for phase III resources at any point in time is a function of the actual 

realizations of recent phase II trials. Continuing with our example of the firm that has phase III capacity 

of 2 compounds/yr., consider two possible realizations of phase II trials (Figure 3)– (1) where the realized 

success rate is 50% (2 of the 4 compounds in phase II trials succeed); and (2) where the realized success 

rate is 75% (3 of the 4 compounds in phase II trials succeed). In case 2, the firm has more compounds 

than the available phase III resources, thus a compound may have to wait in a “buffer” before phase III.  
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Now consider that out of the two compounds currently undergoing phase III trials in each of the above 

scenarios, one compound fails; say the compound denoted by the rhombus in Figure 3. In both cases, the 

firm loses the potential future sales from the failed compound; however in case 2, there is a mitigating 

effect. In case 2, there is a compound waiting in the buffer (denoted by the square in Figure 3), which can 

now take advantage of the freed up phase III resources. The value of this waiting compound actually 

increases as it can now enter phase III trials earlier than before and thus, can be brought to the market 

earlier. There is no such mitigating effect of the failure in case 1. Thus, the impact of the failure in case 2 

should be smaller than the impact of failure in case 1.  

Failures that come at a time when the realized phase II success rate in the firm’s pipeline is higher than 

expected lead to an acceleration of the other compounds in the pipeline and their impact may therefore be 

lower. Further, the benefit associated with the acceleration should depend on the unanticipated demand or 

the number of compounds that are waiting in the “buffer” captured by the degree to which the realized 

success rate was higher than the expected phase II success rate. 

While the above example uses the notion of a buffer to illustrate this effect, buffering of demand is not 

necessary for observance of this phenomenon. As long as higher utilization of resources leads to longer 

processing times, the freeing up of resources due to failures will have a beneficial impact with respect to 

accelerating compounds in the pipeline. Further, the benefit associated with this acceleration is higher at 

higher levels of utilization, since the extent of the acceleration and the number of projects that benefit 

from this acceleration are both higher at higher levels of utilization. Formally, our hypothesis states— 

Hypothesis 3: The decrease in firm value from a phase III failure is lower (higher) if the 

firm has experienced an above (below) average phase II success rate in the period prior 

to the failure.  

Note that Hypothesis 3 is based on the number of successful phase II compounds in the recent past across 

all target markets; whereas Hypothesis 2 is concerned with successful compounds in all phases but only 

in the target market of the failed compound.  
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4 DATA SOURCE 

We use drug development data from the R&D Insight database developed by ADIS international. The 

database is compiled by a team of scientific editors that track more than 17,000 drugs in active 

development from over 200 pharmaceutical companies. The primary sources of information used by the 

editors are: direct contact with companies involved with research and development, information collected 

from medical and biomedical journals, attendance at international meetings and conferences, company 

annual reports, news services, press releases, licensed Lehman Brothers' Pharma-Pipelines data and public 

information from the Food and Drug administration. Drug development is tracked from the earliest 

laboratory report and continues through to world market launch. Every scientific or commercial 

development advancing the drug's progress to market is assessed, evaluated, and verified for authenticity 

before being reported in the database. The database is used by many leading pharmaceutical companies to 

monitor the competitive landscape. A sample entry for a failed drug from the ADIS database is provided 

in Section 4 of the online supplement. 

We use the ADIS database to identify dates of drug failures, the associated indication and the ownership 

pattern of the drug. We also use the database to impute the portfolio properties (other compounds in 

development ( )1 2 3, ,n n n , and the recent success rates) on the date of the failure. Finally, we look at 

industry-wide historical data on successes and failures from the ADIS database to estimate the probability 

of success of compounds in each indication ( )1 2 3, ,p p p .  

To verify data on the firm’s portfolio (other compounds in development ( )1 2 3, ,n n n , and the recent success 

rates), we imputed the pipeline for one firm in our dataset (Merck & Co), and compared it with the private 

data for this firm. The pipeline data imputed from the ADIS database and in the firm’s records were 

identical. To verify the authenticity of the failure announcements, we checked a sample of failures with 

the lead pharmaceutical analyst at a financial firm. Failures were found to be accurate in both date and 

indication specification. Some of the more prominent failures in our sample receive extensive coverage in 

the popular press. We compare the dates of these failures from the ADIS database with news reports (in 
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the Factiva database) and find the data from ADIS to be accurate. A news-report and the associated ADIS 

data-base entry is provided in Section 5 of the online supplement. 

We restrict our attention to all phase III failures of compounds catalogued in our data source that 

originated at publicly traded firms with common stock listed on any US market. We get stock price data 

from the CRSP financial database.3 We identify the ownership and holding pattern of the originator 

firm(s) at the time of the failure using the Corporate Affiliations dataset maintained by the Lexis-Nexis 

group. Some descriptive statistics on the firms included in this study are provided in Table 1. The annual 

sales (averaged over the period of the study) for firms in our dataset range from over US$20 billion for 

the big pharmaceutical firms like Merck and Co., Pfizer Inc. and Bristol Myers Squibb to just under US$1 

billion for biotechnology firms such as Chiron Co. The median firm in our dataset has annual sales of 

US$12.9 billion, employs 44,240 employees, spends US$1.6 billion annually on R&D (14.44% of sales), 

and experiences 7 phase III failures during the period of our study.  

During the time-period of the study, 1994-2004, there were 169 phase III failures for publicly traded 

pharmaceutical firms in our database. We run our event study around these events. The year 1999 

contributes the largest number of events in our study (29 phase III failures). The median year in our study 

has 15.5 phase III failures. Less than 2% of the events are found to be within a month of other related 

events, thus assuaging any concerns about clustering of events.  

5 METHODOLOGY & VARIABLES 

5.1 Measuring the Impact of Drug Failures 

To measure the implications of a late-stage failure, we use an event study methodology (MacKinlay 

(1997), Kothari and Warner (2004)). Event studies have been applied to quantify the impact of a wide 

variety of firm-specific and economy-wide events. Notable applications from the finance and accounting 

literature involve measuring the impact of mergers and acquisitions, earnings announcements, issue of 

                                                      
3 The CRSP Database provides access to NYSE, AMEX and NASDAQ daily and monthly securities prices, as well as to other 
historical data related to over 20,000 companies. The data is produced, and updated quarterly, by the Center for Research in 
Security Prices (CRSP), a financial research center at the Graduate School of Business at The University of Chicago. 
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new debt or equity, announcements of macro-economic variables (trade deficits, unemployment data, 

interest rates, etc.). Notable applications from the strategy literature include studies on the impact of CEO 

succession, name changes, diversification, takeovers, and competitive entry. In the product development 

and supply chain management literature, they have been employed to estimate the impact of new product 

introductions (Chaney et al. (1991)), the consequences of delays in new product introductions (Hendricks 

and Singhal (1997)), the effect of supply chain disruptions (Hendricks and Singhal (2003)), the impact of 

ISO 9000 certification (Corbett et al. (2004)) and the financial consequences of excess inventory (Singhal 

(2005)). 

Using the prices for a firm’s tradable securities in financial markets, an event study measures the impact 

of a specific event on the value of a firm as measured by the price of its common stock. The logic behind 

this approach is the efficient-market hypothesis– given rationality and information in the marketplace, the 

impact of an event should be reflected by the change in stock price of the firm. 

Event study methodologies provide a rigorous foundation to isolate the component of change in stock 

price due to the event and the change in stock price due to other factors known prior to the event. A model 

for the returns given the information prior to the event is first estimated using historical data over the 

estimation period for each event in the study. This estimated model is then used to predict the expected 

returns on the day of the event, conditional on no new information or events. To ensure robustness of our 

findings, we use three alternative return-generating models for predicting the expected returns, the 

comparison period model (CP), the market model (MM) and the Fama-French three factor Model (FF). 

Details of the three models are provided in Section 2.1 of the online supplement. These models give us 

the expected returns on the day of the failure taking into account the impact of market and firm specific 

factors, but in absence of the failure. 

The component of the return that can not be explained by the return-generating models or the difference 

between the actual return and the expected return is attributed to the event, in our case the failure of the 

phase III clinical trials. This component is commonly referred to as the abnormal return. If no 

economically relevant information is available, we expect this abnormal return to be zero.  
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Often, the impact of the event is not limited to the day of the event, but to a few days before and after the 

event, referred to as the event window. We use multiple event windows, including those advised by 

looking at trading volumes using the techniques proposed by Tkac (1999) (detailed in Section 2.2 of the 

online supplement). We then aggregate the abnormal return for each day in these event windows to obtain 

our main dependent variable the cumulative abnormal return or iCAR . This variable captures the financial 

impact of losing a compound while controlling for other factors which influence firm value. This is an 

empirical measure of the value of each compound to the associated firm. We test our three hypotheses on 

this variable. 

For Hypothesis 1, we test the null hypothesis that 0iCAR = . We report the cross-sectional standard 

deviation test (the ‘standard approach’ from MacKinlay (1997)), the standardized Patell-Z test statistic 

(Patell (1976)),4 a test that controls for cross-sectional dependence between individual security returns 

(Crude Dependence Adjustment Test from Brown and Warner (1980), pg. 233),5 a non-parametric 

generalized sign-z statistic (Sprent (1989))6 and the non-parametric Wilcoxon Signed Rank test. We test 

this hypothesis for several typical event windows as well as the event window implied by excessive 

trading volumes. 

To test hypotheses 2 and 3, we run a linear regression with iCAR  as the dependent variable, the two 

explanatory variables–ΔTAPIS and the Phase II buffer, in addition to the control variables. We describe 

the construction of the two explanatory variables and the control variables in the next three sub-sections. 

5.2 Explanatory Variable: TAPISΔ  

To test hypothesis 2, we need to construct our explanatory variable, TAPISΔ  (given by the expression in 

(2)). TAPISΔ  is a function of the number of compounds at each stage of development ( )1 2 3, ,n n n  and the 

                                                      
4 Unlike the cross-sectional standard deviation test, in computing the Patell-z statistic, each abnormal return is standardized using 
the estimated variance of the abnormal return obtained from the estimation period model.  
5 This test uses a single variance estimate for the entire portfolio thereby avoiding the potential problem of cross-sectional 
correlation of security returns. 
6 The non-parametric sign-z test, tests the null hypothesis that the number of positive and negative return is the same (Sprent 
(1989). 
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probabilities of success of each compound ( )1 2 3, ,p p p . ( )1 2 3, ,n n n  are obtained from the ADIS database as 

the number of distinct compounds in each of the three stages of trials being developed for the same 

market as the failed compound. To estimate the probabilities, we use data on all clinical trials in the ADIS 

database. A vast majority of these trials are run by firms that are not publicly traded and don’t otherwise 

appear in our sample. Danzon et al. (2004) finds that the indication explains the largest fraction of the 

variance in the odds of success and failure between different drugs.  Thus, we estimate ip  at the level of 

an indication and assume that all drugs for an indication at the same stage of development have the same 

odds of failure. For example, to determine ip  for an Alzheimer’s drug, we look at the performance of all 

Alzheimer’s drugs irrespective of originating firm. The estimated indication-phase specific probabilities 

and the detailed procedure are provided in Section 3 of the online supplement. Finally, we use an annual 

discount rate of 12%, to compute 1α  and 2α .7  A minority of compounds (25 out of 169) in our sample 

fail for more than one indication at the same time (often due to safety concerns), thus they have more than 

one TAPISΔ  value associated with them. For these compounds, we compute an aggregated TAPISΔ  as the 

sum of the multiple TAPISΔ  values and present our results using the same. We also tested our results 

using the average and the maximum of the multiple TAPISΔ  values and find similar results.  

5.3 Explanatory Variable: Phase II Buffer 

Hypothesis 3 posits that the impact of the phase III failure is proportional to the extent of the 

unanticipated demand for phase III resources at the time of the failure captured by the difference between 

the recent success rate and the average phase II success rate for the firm in question (Phase II buffer). To 

compute the phase II success rates, we divide number of phase II successes (across all indications) by the 

total number of phase II trials (sum of the number of successes and failures across all indications) over the 

relevant time period for the firm in question. For the average, long-run or expected success rate, we look 
                                                      
7 A compound in phase I (II) of development on an average takes 4 (2) years longer to reach the market than a compound in 

phase III of development, thus it is worth significantly less to the firm. ( ) 4
1 1001 xα −
= + and ( ) 2

2 1001 xα −
= + , where x% is the 

cost of capital. The results are presented using x=12%, implying 1 0.636α = and 2 0.797α = , though the results are near 
identical for a wide range of values that we tested (x=5% to 35%).  
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at the number of successes and failures for the firm over the full time-period of our data-sets– 1994 to 

2004. To compute the recent success rate we look at the number of successes and failures in 300-day 

period preceding the day of the failure announcement.8 The difference of the two is used as the 

explanatory variable in our regressions (Equation (3)). 

 [ ]

[ ] [ ]

300,0

300,0 300,0

# #
# #

# #

t t

t t
t t

of Successes of Successes
of Successes of Failures

of Successes of Failures

Phase II Buffer Recent success rate Long run success rate
∈ − ∀

∀ ∀
∈ − ∈ −

+
+

= −

= −  (3) 

To test the robustness of our results, we also run our regression models, with just the recent success rate, 

the absolute number of recent successes, and the log of the recent success rate minus the log of the long 

run success rate. Our results are robust to all these formulations.  

5.4 Control Variables 

We control for the properties of the compound in question and the firm in question.  

At the compound level, we include three variables: First, the number of active trials at the time of the 

failure in the same indication as the compound in question across all firms present in the ADIS database 

(NActiveTrials). Previous research (Nicholson et al. (2003)) finds that this variable is highly correlated 

with the revenue potential of the compound. Second, the number of licensees for the compound in 

question (Nlicensees). Depending on the structure of the licensing agreement, this variable is associated 

with the financial stake of the firm in the compound. Third, the number of originating firms associated 

with the compound (NOriginators). This variable is also related to the financial stake of the firm in the 

compound in question.  

We also include two firm-specific control variables- the sales in the quarter of the failure (Sales) and the 

R&D expenses incurred by the firm in the quarter of the failure (R&D Expenditure) to account for firm-

specific heterogeneity. These variables capture the size of the firm and the R&D organization associated 

with the failure. 

We estimate the model in equation (4). 
                                                      
8 We consider alternate specifications that look at periods 200 days and 400 days before the failure. The results are near identical. 
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Hypothesis 2 implies negative and significant estimates for the coefficient 6a . Hypothesis 3 implies 

positive and significant estimates for the coefficient 7a . 

Descriptive statistics for the explanatory variables constructed for this study are provided in Table 2. The 

median failed compound has one originator firm, is targeted at one indication, has one backup compound, 

and has no licensees. Table 3 shows the Pearson correlation coefficients between the variables used in this 

study. 

6 RESULTS AND DISCUSSION 

6.1 Identification of Event Window: Abnormal Trading Volume 

We first estimate a model for the benchmark trading volume for each firm and find the days associated 

with unexpectedly high trading volume. The abnormal trading volume data are illustrated graphically in 

Figure 4. Average trading volume peaks to 816 million shares over the expected trading volume two days 

before the announcement of the failure. Trading volumes in the time period (-2, 4) are found to be 

statistically significant and different from zero. This implies that most of the information about the event 

failure is incorporated in the value of the firm during this period. Thus, the abnormal returns in the period 

(-2, 4) should capture the effects of the event on the firm’s valuation. To ensure robustness of our results 

with respect to the choice of the event window, we also conduct all further analyses with abnormal returns 

for alternative event windows ((-3, 3) and (-4, 4)) often used in the event study literature. 

6.2 Impact of phase III Failures: The Average Cumulative Abnormal Return 

We estimate three benchmark expected return models- the comparison period model (CP), the market 

model (MM) and the Fama-French three factor model (FF). These models are estimated individually for 

each security event in our database. These estimates are used to compute the daily and cumulative 

abnormal returns as described in Section 5.1.  

Table 4 reports the results for the mean and median cumulative abnormal returns. The mean cumulative 
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abnormal returns are negative and significant for a wide variety of model specifications, event windows 

and test specifications. These results provide evidence for hypothesis 1 predicting a negative effect of a 

drug failure on firm value. Over the time period of the event window, (-2, 4), a phase III drug failure leads 

to an average loss of 1.46% in the value of the firm (according to the Fama French model, estimates range 

from -1.07% to -1.61% using different models and event windows). In dollar terms, these losses 

correspond to a decrease in the firm value by US$405 million. 

Chaney et al. (1991) in their study of announcements of product successes report a cumulative abnormal 

return of 0.21% using the market model for the pharmaceutical firms in their sample. For an average 

phase-III compound, with an 80% chance of success, the increase in probability on completion of a 

successful trial is 20% as opposed to an 80% reduction in probability on failure. Thus, we expect the 

financial impact from the study by Chaney et al. (1991) to be four times smaller. Our results from the 

market model are in line with the results in this paper. 

Sharma and Lacey (2004) in their comparative study of drug development failures and successes, 

construct a dataset of 41 outright FDA rejections of New Drug Approval (NDA) applications (the last 

stage in Figure 1). An NDA rejection indicates a serious mismanagement in the firm’s internal controls 

and systems to ascertain drug safety. Typical reasons for the rare failure at this stage may be 

misrepresentation of results, improper design of clinical trials, not following standard procedures during 

trials, withholding data during trials, etc. This is a much more serious and rarer failure than the medical 

failure of a drug undergoing phase III clinical trials. Thus, the expected impact of these events should be 

much larger than that of our event. They find abnormal returns as high as 21% associated with the 

announcement.  This corresponds to a financial impact of over US$ 7 billion, which is much higher than 

the net present value of the sales of even the biggest blockbuster drugs. This finding suggests that 

investors may be losing confidence in the firm’s management on account of this kind of rare failure and 

may be penalizing it for much more than just the lost compound. 

The cross-industry study of Hendricks and Singhal (1997) reports that on announcement of product 

development delays firm values drop by an average of 5.25% or US$119 million.  Chen et al. (2005a) 
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report that on announcement of delays firm values drop by 11.4%. 

6.3 Effects of backup projects and recent success rate 

Table 5 provides results from the OLS estimation of the model in equation (4). Results are provided for 

the three return generating models described in Section 5.1 and three event windows. We obtain similar 

results using a WLS regression, with the precision of the estimated abnormal returns as the weights. The 

2R  for our models ranges from 12% to 25%, which is comparable to other studies of this type (e.g. 

Chaney et al. (1991)). The regressions using the dependent variable created from the market model and 

the Fama-French model are all significant at the p<0.01 or higher level. The regressions using the 

comparison period model are significant at the p<0.05 level. Diagnostic tests reveal no problems with 

heteroskedasticity or multi-collinearity. We also examine our estimation procedures for influential 

observations using guidelines suggested by Belsley et al. (1980) and find our results to be robust to 

outliers.  

We find support for Hypothesis 2. The coefficient for the variable ΔTAPIS is found to be significant. A 

one percentage point difference in the change in TAPIS leads to 1.63 basis points difference in the 

abnormal return associated with the failure (according to the Fama-French (-2,4) model, estimates from 

other models range from 1.23 to 3.6 basis points). In the illustrative example of Figure 2, our regressions 

suggest that failure 1 would hurt the firm by an extra 1.05% or US$294.2 million compared to failure 2. 

Further, for one standard-deviation difference in the value of ΔTAPIS (calculated from our sample), the 

difference in financial impact corresponds to 0.81% or US$227 million.  

Support for hypothesis 2 demonstrates the following– First, the presence of other compounds for the same 

market leads to lower financial impact of a failure or lower valuation of a compound. Second, in 

developing ΔTAPIS, we assume that all successful compounds are equally good, have the same 

probability of success at the same stage of development, and that the successes of different compounds in 

clinical trials are independent (like Ding and Eliashberg (2002)). Our empirical evidence shows that 

ΔTAPIS is correlated with the financial valuation of compounds by stock markets. Thus, our assumptions 
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are representative of the collective wisdom of the stock markets. 

We find support for Hypothesis 3. The coefficient for the variable ‘Phase II buffer’ is found to be 

significant. Failures that follow a period where the phase II success rate was higher than the long-run 

average success rate lead to a less negative impact on the firm value. Conversely, failures that follow 

periods of below average phase II success hurt firm value more. A one percentage point difference in 

success rate (Phase II buffer), leads to a 6.58 basis point difference in the abnormal return associated with 

the failure (According to the Fama-French (-2,4) model, estimates from other models range from 4.2 basis 

points to 6.8 basis points). In the illustrative example of Figure 3, our regressions suggest that failure 2 

would hurt the firm by an additional 1.65% or US$457 million as compared to failure 1. Further, for one 

standard deviation difference in the Phase II buffer, the difference in financial impact corresponds to 

1.38% or US$382.2 millions.  

Support for Hypothesis 3 demonstrates that presence of additional projects that utilize the same 

development resources as the failed project mitigates the impact of a failure. Put differently, the value of a 

compound for a portfolio in which there are many other projects that utilize the same resources is smaller 

than for a portfolio in which it is the sole claimant to these resources. Further, in developing hypothesis 3 

we assumed that development resources can not be scaled up or down in the short-term. Empirical 

evidence suggests that this is a representative assumption.  

Support for this hypothesis also empirically validates the anecdotal phenomena that a failure (an in-

licensing opportunity) at a time when the product development pipeline is ‘congested’ or has more 

compounds than expected hurts (helps) the firm less vis-à-vis a failure (an in-licensing opportunity) at a 

time when the development pipeline is ‘lean’ or has fewer compounds than expected (cf. Landers and 

Lublin (28th November, 2003) in the Wall Street Journal on the impact of failures and a lean pipeline on 

Merck Pharmaceuticals). 

In testing Hypothesis 3, we argued that the difference in the phase-II success rate measures the excess of 

work or shortfall of phase-III resources. Alternately, this variable may also measure a perception of the 

firm’s capabilities; a higher than average phase II success rate may indicate high or improving 
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capabilities, and vice-versa. To test this alternate interpretation, we construct a variable measuring the 

difference in the recent phase III success rate versus the long-run phase III success rate, and run our 

regression with this variable instead of the ‘phase II buffer’ variable used in the study. This variable is 

arguably an even more significant measure of firm capabilities, but does not measure the work build-up 

for phase III. We find no statistically significant impact of this variable on the impact of the failure. This 

discredits the alternate interpretation of the variable used to test the hypothesis.  

Taken together, support for Hypotheses 2 and 3 suggests that portfolio-level project interactions 

significantly alter the value of a project. Ignoring these interactions would lead to errors in estimation of 

the value of a project by the order of 100’s of millions of dollars when the average values of a project is 

approximately US$500 million. This could lead to highly sub-optimal portfolio and capacity choices. 

Thus, a product development manger interested in maximizing the returns for his shareholders would be 

benefited by using decision support systems that acknowledge and model these interactions based on our 

empirical observations. 

Finally, while for hypothesis 2, we developed a detailed non-linear model relating the number of backup 

compounds to the financial value of a compound; for hypothesis 3, we did not do so. The financial impact 

of the congestion effects central to hypothesis 3 may not be linear in the proxy for utilization.9 An 

appropriate queuing theoretic model that analytically captures these effects remains the subject of our 

future work. 

7 CONCLUSION 

The results of our empirical investigation suggest that a late-stage failure of a project is associated with a 

significant decline in firm value; for an average failure in our data set, this corresponds to a decline in 

value of US$ 405 million. We find support for our hypothesis predicting that decline in firm value is 

mitigated by the presence of backup projects. Put differently, the value of a project for a portfolio in 

which there are multiple projects targeting the same market is smaller than that for a portfolio in which it 
                                                      
9 We thank the anonymous referee for highlighting this. 
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is the sole claimant to the market. We also find support that this impact is mitigated if the firm has an 

above average phase-II success rate prior to the failure leading to more than expected number of 

compounds that will utilize the same development resources as the failed project. Put differently, the 

value of a project to a portfolio in which there are more projects that utilize the same resources as the 

failed project is smaller than to a portfolio in which it is the sole claimant to the resources.  

In addition to validating our intuition on the portfolio-level projects interactions, support for our 

hypothesis validates the assumption around the structure of portfolio-level project interactions that we 

used to develop our theoretical metrics on the financial impact of these interactions. Finally, the 

magnitude of our results suggests that these portfolio-level project interactions significantly alter the 

value of a project. 

Our results also provide a data-driven approach for valuation and comparison of in-licensing 

opportunities available to a pharmaceutical firm. Using the natural experiment of failures, we have built a 

predictive model of the impact of different compounds on the firm’s valuation taking into account the 

portfolio-level project interactions or the fit of the compound in the firm’s portfolio. This model can be 

used to predict the increase in a firm’s value if a particular compound were added to its portfolio. This 

should be the maximum fair price that the firm should pay for this compound. 

While the coefficients estimated in this paper are applicable only for late stage failures in the 

pharmaceutical industry, the insights, framework and empirical methodology developed can be employed 

for analyzing product development portfolios in R&D environments with high uncertainty that is resolved 

in consecutive phases of testing. The development of alternate approaches akin to backup compounds is 

common in many product development settings. The “winner takes all” payoff structure is typical for 

industries where alternate approaches are investigated to address one user need. The notion of shared 

fixed development capacity and the associated economics that we investigate are also typical of many 

R&D environments. Product development environments such as the development of consumer packaged 

goods with test markets, multi-phase defense development contracts, etc. are all amenable to the methods 

and insights developed in this paper. 
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Our study suffers from some potential limitations. The methodology employed rests on the assumption 

that markets accurately estimate the factors that influence profits from drug development. This is a 

reasonable assumption for pharmaceutical industry which has high investments by sophisticated 

institutional investors, extensive regulatory and scientific scrutiny, high levels of disclosure, exogenously 

defined and publicly measured metrics of product performance. However, this assumption may not apply 

equally well to all industries. While the actual impact predicted from the failure may be less accurate 

when the assumption does not hold; the insights into the relationship between firm value and properties of 

the product development portfolio are equally applicable, as long as there is no systemic irrationality 

correlated with our product development variables. 

This study empirically identifies a direction for development of decision support models for portfolio and 

capacity choice in risky development environments. Decision support models that realistically model the 

portfolio-level project interactions that we identify in this paper can be useful for product development 

managers and could help address the limited applicability of academic research on product development 

choices on industrial practice. 
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Figure 1: The drug development process Values are for a typical pharmaceutical company and are normalized based on an average annual output of one compound. 

Development projects that target the same market or indication are denoted with the same symbol. Estimates were obtained from the Parexel Pharmaceutical R&D Statistical 
Source Book, 2002/2003. 
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Figure 2: Example illustrating the role of backup compounds. 
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Figure 3: Example illustrating the effect of different realized Phase II Success Rate 
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Firms in the Study 

Firm/ Subsidiaries No. of phase 
III failures 

(94-04) 

Annual 
Sales+ 

(MM$) 

No. of 
Employees+ 

(‘000s) 

R&D 
Expenditure+ 

(MM$) 

R&D/Sales 
(%) 

Pfizer Inc. 20 21,107.97 67.82 3,788.98 17.95 

Aventis 19 18,159.86 82.81 2,248.14 12.38 

Glaxo SmithKline 17 20,237.11 77.07 2,784.24 13.76 

Bristol Myers Squibb, Mead Johnson  15 17,146.50 48.88 1,994.80 11.63 

Novartis 12 22,852.80 82.24 2,886.46 12.63 

Genentech 11 1,544.39 4.01 439.66 28.47 

Chiron Co., Chiron Vaccines 10 976.37 4.63 302.31 30.96 

Wyeth, Wyeth Vaccines 10 13,546.55 56.91 1,628.51 12.02 

Sanofi Synthelbo 9 7,330.08 31.31 1,184.92 16.17 

Amgen, Amgen Boulder 7 3,581.10 6.73 1,092.44 30.51 

AstraZenca 7 12,998.73 44.24 1,960.31 15.08 

Pharmacia, Monsanto 7 10,707.44 36.91 1,547.00 14.45 

Abbot GMBH, Abbott Labs 5 13,511.70 56.60 1,262.00 9.34 

Eli Lilly 5 9,355.40 33.97 1,706.10 18.24 

Schering AG 5 4,854.75 25.12 875.22 18.03 

Bayer 4 30,645.40 131.56 2,352.43 7.68 

Merck 3 29,708.38 60.31 2,147.03 7.23 

Novo Nordisk 2 2,985.00 15.02 462.82 15.50 

Alcon 1 2,929.33 11.56 307.00 10.48 

Median 7 12,998.73 44.24 1628.51 14.44 
+-Data refer to values reported in the COMPUSTAT Industrial Annual database averaged over the period of the study 
(1994-2004). 

Table 1: Firms in the Study 

Independent Variables 

Independent Variable Mean Median Maximum Minimum Standard 
Deviation 

NActiveTrials 24.99 15 169 0 27.35 

NLicensees 0.76 0 8 0 1.32 

NOriginators 1.20 1 4 1 0.56 

      

Sales (MM$) 3767.27 3627.01 13982.00 117.58 2494.14 

R&D Expenses (MM$) 655.98 483.00 3266.08 67.45 563.77 

ΔTAPIS  0.7006 0.6417 2.2661 0.0294 0.5013 

Phase II Buffer 0.0413 0.0791 0.4138 -0.8095 0.2169 
Table 2: Independent Variables 
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 Pearson Correlation Coefficients 

 NActiveTrials NLicensees NOriginators Sales (Net) 
(MM$) 

R&D 
Expense 
(MM$) 

Phase II 
Buffer ΔTAPIS 

NActiveTrials 1       

Nlicensees -0.18* 1      

Noriginators -0.14* 0.07 1     

Sales (Net) (MM$) 0.29*** -0.28*** -0.29*** 1    

R&D Expense (MM$) 0.2* -0.22** -0.27** 0.61 1   

ΔTAPIS 0.33*** -0.07 -0.08 0.22** -0.08 1  

Phase II Buffer  0.12 0.14* -0.08 0.06 0.02 0.04 1 

 ***-significant at the p<.0.1% level, **-significant at the p<1% level, *-significant at the p<10% level 
Table 3: Correlation between Independent Variables 

439.71

275.14

-8.37

174.97

74.48 105.55

248.48

816.89

549.12

322.71

199.17

441.71

65.36

283.66
310.34

344.37

376.15 343.71

264.57

57.20

-63.57
-10 -8 -6 -4 -2 0 2 4 6 8 10

Days (relative to event)

A
bn

or
m

al
 V

ol
um

e 
(m

ill
io

ns
)

Figure 4: Abnormal Trading Volume

+ – Significant at the 5% level 

X – Significant at the 10% level
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Cumulative Abnormal Return 

  Mean Abnormal Return Median Abnormal Return Change in Market Capitalization

Model Window 

Mean 
Cumulative 
Abnormal 

Return 

Cross 
Sectional 
Std. Dev 

Test 

Patell-Z 
Statistic+ 

Crude 
Dependence 
Adjustment 

Test& 

Generalized 
Sign-Z^ 

Median 
Cumulative 
Abnormal 

Return 

Wilcoxon Signed 
Rank Test 

Mean Change in 
Market 

Capitalization 
(MM$) 

Median Change 
in Market 

Capitalization 
(MM$) 

(-2,4) -1.14% -2.18** -2.20** -2.15** -1.64** -1.12% -1.53* -143.29 -32.63 

(-3,3) -1.19% -2.17** -2.69*** -2.25** -0.77 -1.08% -1.59* -12.91 -16.52 
Comparison Period  

 Model 
  (-4,4) -1.23% -2.16** -2.31*** -2.06** -1.46* -1.52% -1.90** -184.17 -40.12 

           

(-2,4) -1.07% -2.04** -2.15** -2.15** -0.19 -0.38% -1.59* -170.59 -4.90 

(-3,3) -1.20% -2.27** -2.76*** -2.41*** -0.53 -0.48% -2.09** -95.41 -5.07 
Market Model 

  
  (-4,4) -1.38% -2.44*** -2.58*** -2.44*** -1.93** -0.85% -2.81*** -210.28 -36.12 

           

(-2,4) -1.46% -3.17****  -2.90*** -1.79** -0.90% -3.54**** -404.99 -21.77 

(-3,3) -1.48% -3.14****  -2.95*** -1.44* -1.13% -3.89**** -383.86 -51.77 
Fama-French  

Three-factor Model 
  (-4,4) -1.61% -3.18****  -2.83*** -1.79** -1.11% -3.90**** -451.02 -36.94 

 

Significance Levels from a one-tail t-test:****-0.1% significance  ***-1% significance, **-5% significance, *-10% significance. 
+- Unlike the cross-sectional standard deviation test, in computing the Patell-z statistic, each abnormal return is standardized using the estimated variance 
of the abnormal return ( Patell (1976)), standardized tests are not available for the Fama-French Model &-This test uses a single variance estimate for the 
entire portfolio thereby, avoiding the potential problem of cross-sectional correlation of security returns  ^- The non-parametric sign-z test, tests the null 
hypothesis that the number of positive and negative return is the same (Sprent (1989). 

Table 4: Cumulative Abnormal Returns 
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Regression Model: Parameter Estimates  

 Comparison Period Model Market Model Fama French Model 

Variable (-2,4) (-3,3) (-4,4) (-2,4) (-3,3) (-4,4) (-2,4) (-3,3) (-4,4) 

Intercept 0.02 0.0107 0.025 0.0413** 0.027 0.0408* 0.0275 0.0258 0.0376* 
 (0.97) (0.49) (1.11) (1.96) (1.29) (1.86) (1.36) (1.29) (1.84) 

NActiveTrials -0.405* -0.5573** -0.3953 -1.04** -1.04** -0.9308* -0.9582** -1.27*** -1.3*** 
1,000s (-1.78) (-2.3) (-1.59) (-2.13) (-2.14) (-1.83) (-2.13) (-2.82) (-2.85) 

NOriginators -1.091 -0.335 -1.766 -1.53* -0.547 -2.277*** -1.91** -0.989 -2.124*** 
100s (-1.09) (-0.31) (-1.61) (-1.95) (-0.7) (-2.78) (-2.45) (-1.27) (-2.68) 

NLicensees -0.639 -0.422 -0.707 -0.927** -0.616 -0.992** -0.717** -0.416 -0.866** 
100s (-1.56) (-0.97) (-1.58) (-2.24) (-1.5) (-2.3) (-2.02) (-1.18) (-2.41) 

Sales 6.48** 7.11** 5.73* 6.28** 6.58** 6.49** 4.93* 5.41** 4.07 
1,000,000s (2.29) (2.36) (1.85) (2.23) (2.35) (2.21) (1.81) (2) (1.48) 

R&D -2.223* -2.872** -1.927 -2.475** -2.986** -2.204* -2.38** -3.187*** -2.237** 
100,000s (-1.88) (-2.28) (-1.49) (-2.02) (-2.45) (-1.72) (-2.25) (-3.03) (-2.09) 

          

ΔTAPIS -1.902* -1.234 -1.491 -3.585*** -3.172*** -3.188*** -1.633* -1.968** -1.787** 
100s (-1.68) (-1.02) (-1.2) (-3.34) (-2.98) (-2.85) (-1.71) (-2.06) (-1.97) 

Phase II Buffer  6.826*** 5.949** 6.195** 5.789** 4.225* 4.666* 6.577*** 4.241** 5.276** 
100s (2.69) (2.21) (2.23) (2.45) (1.8) (1.89) (2.99) (1.96) (2.37) 

            

Adj R-Sq 9.22% 7.32% 6.71% 17.06% 10.37% 17.90% 19.18% 13.65% 20.32% 

R-Square 14.43% 12.64% 12.07% 21.64% 15.31% 22.42% 24.01% 18.82% 25.08% 

N# 123 123 123 128 128 128 118 118 118 

F-Value 2.77 2.38 2.25 4.73 3.1 4.95 4.97 3.64 5.26 

Pr>F 1.07% 2.63% 3.47% 0.01% 0.49% 0.00% 0.00% 0.14% 0.00% 

 
Significance Levels from a two-tail t-test: ***-1% significance, **-5% significance, *-10% significance. 
 # Abnormal returns can not be estimated for some events– where the security did not trade long enough to estimate the expected return models.  

Table 5: Parameter Estimates 


